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Abstract. It has been advocated that history matching nu-
merical models to a diverse range of observation data types,
particularly including environmental tracer concentrations
and their interpretations and derivatives (e.g., mean age),
constitutes an effective and appropriate means to improve
model forecast reliability. This study presents two regional-
scale modeling case studies that directly and rigorously as-
sess the value of discrete tritium concentration observations
and tritium-derived mean residence time (MRT) estimates in
two decision-support contexts; “value” is measured herein
as both the improvement (or otherwise) in the reliability of
forecasts through uncertainty variance reduction and bias
minimization as a result of assimilating tritium or tritium-
derived MRT observations. The first case study (Heretaunga
Plains, New Zealand) utilizes a suite of steady-state and tran-
sient flow models and an advection-only particle-tracking
model to evaluate the worth of tritium-derived MRT esti-
mates relative to hydraulic potential, spring discharge and
river–aquifer exchange flux observations. The worth of MRT
observations is quantified in terms of the change in the un-
certainty surrounding ecologically sensitive spring discharge
forecasts via first-order second-moment (FOSM) analyses.
The second case study (Hauraki Plains, New Zealand) em-
ploys paired simple–complex transient flow and transport
models to evaluate the potential for assimilation-induced bias
in simulated surface-water nitrate discharge to an ecologi-
cally sensitive estuary system; formal data assimilation of
tritium observations is undertaken using an iterative ensem-
ble smoother. The results of these case studies indicate that,
for the decision-relevant forecasts considered, tritium obser-
vations are of variable benefit and may induce damaging bias

in forecasts; these biases are a result of an imperfect model’s
inability to properly and directly assimilate the rich informa-
tion content of the tritium observations. The findings of this
study challenge the advocacy of the increasing use of trac-
ers, and of diverse data types more generally, whenever en-
vironmental model data assimilation is undertaken with im-
perfect models. This study also highlights the need for im-
proved imperfect-model data assimilation strategies. While
these strategies will likely require increased model complex-
ity (including advanced discretization, processes and param-
eterization) to allow for appropriate assimilation of rich and
diverse data types that operate across a range of spatial and
temporal scales commensurate with a forecast of manage-
ment interest, it is critical that increased model complexity
does not preclude the application of formal data assimilation
and uncertainty quantification techniques due to model insta-
bility and excessive run times.

1 Introduction

Numerical models used to provide water resources manage-
ment decision support are often subjected to data assimilation
through history matching (or “calibration”). This is due to the
large information deficit accompanying the development of
these models and the potential for the history-matching pro-
cess to lead to an increased reliability of simulated outputs
of management interest (herein referred to as “forecasts”)
through variance reduction. Modeling for the purpose of de-
cision support is the context in which the remainder of the
paper is framed.
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It is widely advocated that the assimilation of multiple
types of state observations (i.e., “diverse data”) is benefi-
cial in “constraining” models. In other words, as more data
are used for history matching, and the more diverse those
data are, the more reliable of the forecasts become. This is
an intuitive stance arising from direct application of Bayes’
equation and from the recognized rich information content of
diverse data types; this intuition is supported by many stud-
ies (e.g., Sanford et al., 2004; Michael and Voss, 2009; Ginn
et al., 2009; Li et al., 2009; Gusyev et al., 2013; Hansen et al.,
2013). For example, Hunt et al. (2006) demonstrated the
importance of unconventional observations including lake–
aquifer exchange fluxes, the depth of lake isotope plume and
groundwater travel times in achieving “well-constrained pa-
rameter values” (e.g., acceptable posterior variance) through
history matching a regional-scale groundwater model.

History matching to environmental tracer observations, in
particular, is a widely regarded mechanism for improving the
reliability of forecasts. In a review of approaches for model-
ing environmental tracers in groundwater systems, Turnadge
and Smerdon (2014) state that age data have been useful
for constraining models; in particular, “simulation of envi-
ronmental tracer transport that explicitly accounts for the
accumulation and decay of tracer mass, has proven to be
highly beneficial in constraining numerical models”. Zell
et al. (2018) showed the relative importance of water level,
stream discharge and environmental tracers (including tri-
tium, chlorofluorocarbons – CFCs and SF6) in the condi-
tioning of groundwater travel time forecasts. They reported
that, overall, tracer data were of considerable benefit in terms
of forecast uncertainty reduction. In a recent review paper,
Schilling et al. (2019) state that assimilation of concentra-
tion observations through surface-water–groundwater flow
model history matching “harbors huge potential”, based on
the findings of previous studies, while the assimilation of
tracer-derived residence time observations in these models
also often help significantly (where an appropriate approach
is adopted; e.g., Sanford, 2011; Zuber et al., 2011).

However, the extent to which the assimilation of diverse
data types (including environmental tracers) is beneficial has
previously been investigated only from a somewhat theoreti-
cal standpoint, i.e., neglecting the effects of model error. Di-
rect evaluation of the likelihood term of Bayes’ theorem is
predicated on a “perfect” simulator to appropriately condi-
tion uncertain model parameters through data assimilation.
In real-world modeling contexts, however, the presence of
model error can invalidate even the most rigorous data as-
similation techniques (e.g., Doherty and Welter, 2010; White
et al., 2014; Oliver and Alfonzo, 2018). Therefore, when an
imperfect simulator is used in a data assimilation framework,
extreme care must be taken to assure that the model imper-
fections do not corrupt (through biased first moments or un-
derestimated second moments) the forecast posterior distri-
butions. A number of recent works have shown that the fail-
ure to appropriately frame the imperfect-model data assimi-

lation problem can result in severely biased results (e.g., Do-
herty and Christensen, 2011; Knowling et al., 2019; White
et al., 2020).

The largely unknown ability of an imperfect regional-scale
model to simultaneously assimilate diverse data types that
operate over different spatial and temporal scales – and how
these imperfections may affect model-based decision support
in some contexts – serves as the motivation for the current
study. To the best of the authors’ knowledge, this is the first
study to explore the benefit or otherwise of the assimilation
of tracer data into imperfect models in terms of both forecast
bias and variance.

A subtle, yet very important, distinction should be made at
this point. There is no doubting that diverse data types, in par-
ticular environmental tracers, have contributed significantly
to the understanding of catchment processes and properties
(e.g., Kirchner et al., 2001; André et al., 2005; Stewart and
Thomas, 2008; McDonnell et al., 2010; Morgenstern et al.,
2010; Han et al., 2012; Leray et al., 2012; Siade et al., 2018).
However, as discussed, this study focuses instead on the role
of (imperfect) models in two selected decision-support con-
texts and how the assimilation of environmental tracers in
particular affects their utility in these contexts, i.e., by in-
creasing (or otherwise) the reliability of forecasts.

Herein, we focus specifically on the ramifications of as-
similating the information contained within tritium con-
centration observations and tritium-derived mean residence
time (MRT) observations for model-based decision support
concerning low flow and nutrient transport at the regional
scale in hydrological environments where young groundwa-
ter components are decision relevant. Tritium is a popular
tracer for the identification of relatively young-age ground-
waters (i.e., < 70 years old), for the following reasons:
(i) unlike CFCs, tritium is not affected by microbial degrada-
tion or contamination and (ii) unlike SF6, it is not affected by
potential subsurface sources (e.g., Morgenstern and Daugh-
ney, 2012; Cartwright and Morgenstern, 2012; Beyer et al.,
2014).

The objective of this study is twofold. First, we investi-
gate the theoretical worth of tritium-derived MRT observa-
tions relative to other observation data types. This investiga-
tion is performed using a case study (Heretaunga Plains, New
Zealand) that adopts first-order second-moment (FOSM)
techniques; our analysis focuses on the relative worth of
MRT observations in terms of changes in the uncertainty as-
sociated with spring discharge forecasts at various locations
that are of management interest due to their ecological signif-
icance. This first case study employs advective-only particle-
tracking modeling approach to simulate MRT.

Second, we explore the use of discrete tritium concentra-
tion observations in data assimilation in the context of a con-
trolled model simplification experiment as a means to un-
derstand what, if any, ill effects may be induced by using
these information-rich data types in a simplified (i.e., imper-
fect) model. This exploration is performed using a second
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case study that employs a recently presented paired simple–
complex model analysis (White et al., 2020). The paired
model analysis is used herein to allow for the identification
of possible (and otherwise undetectable) bias and uncertainty
underestimation surrounding forecasts of nutrient load to an
ecologically sensitive estuary system. This second case study
simulates (tritium and nitrate) tracer concentrations directly
– using a full advective–dispersive modeling approach that
also accounts for first-order reaction rates.

2 First case study

The first case study serves to investigate the ability of tritium-
derived MRT observations to constrain ecologically sensitive
spring discharge forecasts (i.e., the “worth” of these observa-
tions) using a model of the groundwater system of the Here-
taunga Plains (New Zealand; Fig. 1). The model was con-
structed primarily for the purposes of groundwater allocation
management decision support.

2.1 The model

The model comprises 302 rows and 501 columns (uniform
100m×100m horizontal grid discretization). Two layers are
used for flow simulations, whereas six layers are used to gen-
erate more vertically detailed cell-by-cell flow budgets for
particle-tracking simulations. MODFLOW-2005 (Harbaugh,
2005) is used to simulate groundwater flow under steady-
state and transient conditions. Separate simulations are con-
ducted for data assimilation and forecasting purposes span-
ning different time periods (and temporal resolutions) of in-
terest (e.g., separate transient flow simulations are conducted
using annual stress periods for the period 1980–2015 and us-
ing monthly stress periods for the periods 1997–1999 and
2011–2015). MODPATH (Pollock, 2012) is used to simulate
advection-only (i.e., neglecting diffusion, dispersion and re-
tardation) reverse particle tracking, thereby providing a ba-
sis for assimilating tritium-derived MRT estimates (Fig. 1).
Specifically, the mean particle exit time corresponding to
each observation location is compared with tritium-derived
MRT estimates (e.g., Sanford, 2011; Gusyev et al., 2014).

Relevant aspects of the model are the following:

– Land-surface recharge estimates, derived from a daily
soil water balance modeling assessment (Rajanayaka
and Fisk, 2018), are specified using the (specified flux)
recharge package.

– The interaction between groundwater and surface wa-
ter (including rivers, streams and springs) is simulated
using the (head-dependent flux) river package. Time-
varying river stage values are specified for the three
main rivers in the region based on observed values.
River bed conductance values are varied seasonally to
reflect in an approximate manner the non-linear rela-

tionship between field observations of spring discharge
and groundwater levels.

– The coastal boundary condition is represented using the
(head-dependent flux) general-head boundary package.
The general-head stage is specified using a density-
corrected mean sea level (e.g., Morgan et al., 2012).

– Groundwater abstraction rates, based on observed and
estimated data, are represented using the (specified flux)
well package.

For a more detailed description of the Heretaunga Plains
models, the reader is referred to Rakowski and Knowling
(2018).

2.2 Forecasts

We focus on the following forecasts due to their ecological
significance and their potential to be impacted by groundwa-
ter abstraction:

– spring discharge rate during summer at two locations
(one in the central Heretaunga Plains and one in the up-
per reaches of the catchment) (Fig. 1)

– spring discharge rate during winter at the central Here-
taunga Plains location (Fig. 1).

2.3 Observations for assimilation

Data assimilation is undertaken notionally via FOSM tech-
niques using the following observations:

– 6167 groundwater levels (comprising time-averaged
water levels; absolute and deviation-from-mean annual,
monthly and daily water levels; long-term differences in
water level; and vertical head differences);

– 92 surface-water–groundwater fluxes (time-averaged
and transient river gain and loss fluxes and spring dis-
charge fluxes, obtained using a range of techniques in-
cluding flow gauging, electrical conductivity and tem-
perature surveys, water isotopic analyses, etc.; Wilding,
2017); and

– 52 groundwater MRT estimates derived from tritium
concentrations using lumped-parameter models. Specif-
ically, a combination of exponential piston-flow models
(EPMs) and binary-mixing models (BMMs) (that com-
prise two EPMs) were used. BMMs were employed for
wells where long time series data are available for mul-
tiple tracers and where an adequate fit to different tracer
signals could not be obtained on the basis of a single
EPM. Relative EPM mixing fractions were specified on
the basis of aquifer confinement conditions and well
screen length (mixing fractions of 80 %–95 % were ap-
plied for wells with a long screen in unconfined con-
ditions, whereas mixing fractions of 50 %–60 % were
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Figure 1. Heretaunga Plains model schematic, including the river boundary conditions (blue lines), top-layer confinement status (unconfined
areas shaded blue and confined areas shaded yellow) and the coastal general-head boundary (magenta line). The location of groundwater
tritium-derived MRT observations are shown as red triangles. The location of forecasts – spring discharge rates during summer and winter –
are shown as white markers.

applied for wells with shorter screens in confined con-
ditions). The reader is referred to Morgenstern et al.
(2018) for more details.

A highly parameterized approach was adopted (e.g., Hunt
et al., 2007; Knowling et al., 2019), involving a total of
822 uncertain parameters. Spatially distributed parameteri-
zation of hydraulic conductivity (horizontal and horizontal–
vertical anisotropy ratio), effective porosity, specific storage
and specific yield is achieved using pilot points (e.g., Do-
herty, 2003). Spatially distributed river bed and boundary
conductance parameters are defined on a reach and zone ba-
sis, respectively. We refer the reader to the Supplement for
more information.

2.4 Uncertainty quantification and data-worth
exploration

Here we employ FOSM techniques (e.g., Tarantola, 2005;
Doherty, 2015) to investigate the theoretical worth of var-
ious observation data types in terms of the their influence
on the uncertainty variance surrounding forecasts following
data assimilation. Application of FOSM in this context re-
quires only consideration of the relative differences in esti-
mated forecast variance as a result of conditioning on dif-
ferent observation data types. The use of FOSM in relative
contexts has been shown to be especially robust (e.g., Daus-
man et al., 2010; Herckenrath et al., 2011; Knowling et al.,
2019).

The theoretical underpinnings of FOSM-based uncertainty
quantification and data-worth assessment and details related
to its application herein are presented in Appendix A.

Aspects that are relevant to the application of FOSM
herein include:

– The prior parameter covariance matrix 6θ was spec-
ified as a block-diagonal matrix whereby geostatisti-
cal correlation between pilot-point-based spatially dis-
tributed parameters is represented through the use of an
exponential variogram with a range of approximately
10 000 m and a sill proportional to the expected prior
variance (the range of the square root of the diagonal
elements of 6θ ; i.e., the standard deviation of prior pa-
rameter uncertainty is given in the Supplement). Non-
spatially and non-temporally distributed parameters are
assumed to be uncorrelated and therefore occupy diag-
onal matrix elements only.

– The Jacobian matrix J was populated using 1 % two-
point derivative increments.

– The diagonal elements of the epistemic noise covariance
matrix 6ε (see Appendix A) was specified on the basis
of observation “weights” adjusted in such a way that
the measurement objective function equals the number
of non-zero weighted observations, in order to approxi-
mate epistemic noise (i.e., the combined impact of ran-
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dom measurement errors and model simplification er-
rors) based on model residuals (e.g., Doherty, 2015).

2.5 Results

For the summer–spring discharge forecast in the central
Heretaunga Plains, MRT observations display a worth that
is considerably less than that of spring discharge observa-
tions during the summer months (i.e., when lower flows per-
sist) and transient head observations (Fig. 2a). This is not
surprising given that the forecast and the summer–spring
discharge observations are of the same type and represent
the same temporal condition, and transient head observa-
tions are plentiful (5704), spanning different time periods at
annual, monthly and daily resolutions. The worth of MRT
observations is greater than winter–spring discharge obser-
vations, indicating a higher relevance of the spatially and
temporally integrated information contained within MRT ob-
servations for this low-flow-related prediction compared to
the higher-frequency and higher-magnitude signals captured
within spring discharge observations during winter.

Similar results from a relative perspective are apparent
for the summer–spring discharge forecast in the upper por-
tion of the Heretaunga Plains. That is, transient head ob-
servations and spring discharge observations during summer
are of the highest worth, followed by observations of time-
averaged heads, MRT and winter–spring discharge (Fig. 2b)
– for reasons described above. The greater worth of MRT ob-
servations for this forecast compared to the summer–spring
discharge forecast located down gradient indicates that this
forecast is more sensitive to (uncertain) model parameters
that are conditioned through assimilating MRT observations.
This is due to the fact that the forecast is located where the
aquifer is unconfined and receives rainfall and river recharge:
these recharge rates are informed by MRT observations and
have a large influence on the forecast.

For the winter–spring discharge forecast, the worth of
MRT observations is lower than that of other observations
(Fig. 2c). This indicates a low relevance of the spatially
and temporally integrated information contained in MRT
observations with respect to a forecast concerning higher-
frequency and higher-magnitude signals. This is also sup-
ported by the relatively low worth of the time-averaged
head observations due to the temporally integrated nature of
these quantities. As expected, a significantly greater worth
of spring discharge observations during winter is evident for
this forecast due to the unique and directly relevant infor-
mation content associated with discharge observations that
capture high-flow transience signals.

Across the three forecasts, a significantly larger worth is
evident when MRT observations are added to the observa-
tion dataset compared to when MRT observations are re-
moved from the observation dataset (red versus blue; Fig. 2).
This indicates that correlation occurs between the informa-
tion contained within MRT observations and other observa-

tions. This is generally in contrast to the more unique infor-
mation contained within spring discharge observations.

3 Second case study

The second case study serves to evaluate how assimilating
discrete groundwater tritium concentration observations may
affect the robustness of forecasts in the context of a con-
trolled model simplification experiment, where the simplifi-
cation is related to model vertical discretization (we refer the
reader to White et al., 2020, for an exploration of the appro-
priateness of reduced-discretization models in decision sup-
port more generally). In contrast to the first case study, which
focused on the theoretical worth of derived tritium observa-
tions in terms of changes in forecast variance, this case study
proceeds with repeated data assimilation in a paired simple–
complex model analysis both with and without assimilating
tritium observations. Through these paired-model analyses,
any potential biases or underestimation of variances arising
from the assimilation of tritium observations with a sim-
plified model can be exposed. A linked hydrologic-nutrient
transport model of the Hauraki Plains (New Zealand) (Fig. 3)
is used as a basis for the model simplification experiment.

3.1 The model

The linked hydrologic-nutrient transport model simulates
groundwater and surface-water flow using MODFLOW-
NWT (Niswonger et al., 2011); advective and dispersive
transport of nitrate and tritium in the groundwater and
surface-water system is simulated using the MT3D-USGS
model (Bedekar et al., 2016). Denitrification and radioactive
tritium decay processes are simulated using first-order reac-
tion rates. The model is described in detail in White (2018),
and the vertical-discretization simplification analysis is de-
scribed in detail in White et al. (2020).

Herein, we focus on a single forecast: the cumulative load
of nitrate discharging from the surface-water system to the
Firth of Thames – an ecologically sensitive estuary system
– over a 10-year projection scenario involving present-day
(2018) flow and transport model forcing conditions. This
forecast aggregates flow paths across the entire model do-
main (i.e., it represents the only nitrate-flux sink of the sys-
tem). This forecast is referred to herein as the “Firth fore-
cast”.

3.2 Data assimilation and uncertainty quantification

As described in White et al. (2020), data assimilation was
undertaken via history matching three versions of the model,
each with a different vertical-discretization scheme; his-
tory matching was performed using the iterative ensemble
smoother PESTPP-IES (White, 2018).

History matching was conducted using 100 stochastic pa-
rameter realizations. An ensemble size of 100 was deemed
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Figure 2. Worth of different observation groups (%DW) with respect to forecasts: (a) spring discharge flux during summer in the central
Heretaunga Plains, (b) spring discharge flux during summer in the upper portion of the Heretaunga Plains and (c) spring discharge flux during
winter in the central Heretaunga Plains (see Fig. 1 for locations). The %DW value is quantified as both the increase in forecast uncertainty
variance following the removal of an observation group available for conditioning (red) and the decrease in forecast uncertainty variance
following the addition of an observation group available for conditioning (blue) (see Appendix A). Note the different scales on the y axes.

sufficient to avoid underutilization of observation data (i.e.,
“underfitting”) based on an exploration of the solution-space
dimensionality using a subspace analysis (Moore and Do-
herty, 2005; see the Supplement and Knowling et al., 2019,
for more details). Following history matching, the 10-year
projection scenario was evaluated with the 100 history-
matched realizations (effectively a 100-member sample of
the posterior distribution). From the resulting 100 scenario
evaluations, a posterior probability density function (PDF)
of the First forecast was constructed.

The reader is referred to White (2018) and White et al.
(2020) for a full description of the Hauraki Plains model data
assimilation process; a brief overview is nevertheless pro-
vided as follows:

– Model parameterization. Spatially distributed param-
eterization of (horizontal and vertical) hydraulic con-
ductivity, effective porosity, recharge rate, first-order
denitrification rate, initial concentration and dispersiv-
ity is achieved using a combination of cell-based and
zone-based multipliers. The nitrate loading rate and ab-
straction well rate are parameterized using cell-by-cell
and well-based multipliers, respectively. Streamflow-
routing (SFR) elements are parameterized on a stream-
segment basis. This parameterization approach gives
rise to a problem dimensionality of 141 268, 50 180
and 29 050 for the seven-layer, two-layer and one-layer
model history-matching experiments, respectively. We
refer the reader to White (2018) and White et al. (2020)

for more information on parameterization and construc-
tion of prior parameter covariance matrices.

– Observation data for assimilation. The history-
matching experiments included 20 tritium concentration
observations from the groundwater system (Fig. 3; see
also the Supplement for observation locations per model
layer). Other observations such as long-term averaged
groundwater levels and surface-water flows and tran-
sient surface-water and groundwater nitrate concentra-
tions were also used for history matching (see the Sup-
plement for observation locations).

As shown in White et al. (2020), the reduced-discretization
(one-layer and two-layer) model posterior PDFs for the Firth
forecast display significant bias compared to the correspond-
ing seven-layer model posterior PDF (Fig. 4a, d, g). In White
et al. (2020), it was hypothesized that the tritium observations
were giving rise to the apparent bias in the one-layer and
two-layer posterior PDFs through the phenomenon of (in-
appropriate) parameter compensation (e.g., Clark and Vrugt,
2006; White et al., 2014) arising from history-matching mod-
els with simplified model vertical discretization. Herein, we
test this hypothesis by conditioning all three uniquely dis-
cretized models again, but without using the discrete tritium
observations, and then by comparing the resulting posterior
PDFs to the corresponding PDFs in White et al. (2020). Any
apparent difference in the posterior PDFs for the Firth fore-
cast is therefore directly attributable to the exclusion of the
tritium observations during history matching.
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Figure 3. Hauraki Plains model extent (red dashed line), layer-one
inactive area (shaded) and surface-water network (blue lines). The
terminal surface-water reaches that discharge to the Firth of Thames
are shown as blue triangles. The location of groundwater tritium
measurements are shown as magenta dots.

3.3 Results

The process of history matching with and without available
groundwater tritium concentration observations yields sub-
stantial differences in the posterior PDFs of the Firth fore-
cast (Fig. 4). In the case of the seven-layer “complex model”
(Fig. 4a, b), excluding the tritium observations results in a
posterior PDF with a larger second moment and a slightly
larger first moment compared to including tritium observa-
tions for history matching; the difference between the Firth
forecast posterior PDFs with and without assimilating tritium
observations is between 0 and 2× 107 kg of nitrate (Fig. 4c).
The larger second moment of the posterior PDF when ex-
cluding tritium observations represents an intuitive and ex-
pected outcome: using fewer observations for parameter con-
ditioning through history matching should (theoretically) re-
sult in a larger posterior variance for the forecasts that depend
on those parameters.

Herein, for the purposes of identifying bias, the seven-
layer model is considered to represent the best-available es-
timate of the Firth forecast. Using this construct, we see that
there are significant differences in posterior PDFs across the
uniquely discretized models arising from data assimilation
that included the tritium observations (Fig. 4a, d, g). This

is largely in contrast to the case where data assimilation is
undertaken without the tritium observations, which leads to
much more subtle differences in posterior PDFs across the
uniquely discretized models (Fig. 4b, e, h).

The bias apparent in the posterior difference PDFs for
the reduced-layer models relative to the seven-layer model
(Fig. 4c, f, i) is directly attributable to the use of tritium ob-
servations in the data assimilation process. The difference
between the Firth forecast PDFs resulting from data assim-
ilation with and without tritium is most pronounced for the
one-layer model (Fig. 4i). In this case, excluding tritium ob-
servations from the history-matching results in a decrease in
simulated nitrate discharge of 2×107 to 4×107 kg – approx-
imately a 40 % decrease in simulated mean nitrate discharge.
We attribute the apparent one-layer PDF bias to the loss of
simulated vertical flow and associated deeper groundwater
flow paths. Briefly, this occurs due to the aggregation of nu-
merical discretization effects – the flow paths of a coarser-
layer model will be a smoother and averaged representation
of those derived from a finer-layer model. While these deeper
flow paths are not important for simulating the nitrate trans-
port cycle (given the relatively high denitrification rates in the
Hauraki system), it is apparently important for assimilating
the tritium concentration observations.

The biases identified reflect the sensitivity of the Firth
forecast to uncertain parameters that were conditioned by tri-
tium concentration observations. This occurs due to the spa-
tially integrated nature of the Firth nitrate-load forecast and
because the tritium observations provide insight into spatially
and temporally averaged recharge and lateral flux rates in the
upgradient portion of the domain, where most of the surface-
water–groundwater exchange occurs.

4 Discussion and conclusions

This study explores the ramifications of assimilating tri-
tium concentration and tritium-derived interpretation ob-
servations, specifically in the context of two examples of
decision-support modeling. The benefit or otherwise of tri-
tium data in other contexts such as site system character-
ization and understanding and conceptual-model develop-
ment is therefore not the focus of the current study; this
study is concerned with a model’s ability to “predict” (in two
decision-support contexts) rather than “explain” (observed
system behavior), as contrasted by Shmueli (2010).

The first case study presented herein serves to demon-
strate that assimilating the rich information contained within
tritium-derived MRT observations may be of variable worth
in terms of improving the reliability of forecasts, especially
where MRT observations are correlated with other available
state observations (e.g., where hydraulic data are widespread,
given the apparent spatially and temporally integrated infor-
mation content of MRT observations, as supported by Ginn
et al., 2009). Moreover, the worth of MRT observations is
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Figure 4. Comparison of posterior probability density functions (PDFs) for the Firth forecast. The left column (a, d, g) allows for the
identification of bias as a result of both model simplification and tritium (Tr) assimilation. By comparing to the middle column (b, e, h), model
simplification-induced bias can be separated from that induced by assimilating tritium observations. The isolation of tritium assimilation-
induced bias evident with different simplified models is shown in the right column (c, f, i). Including tritium observations in the conditioning
of the one-layer and two-layer models (g, d) yields significant bias compared to the seven-layer PDF (a). However, if tritium observations are
excluded from conditioning, the one-layer and two-layer PDFs (h, e) have considerably less bias compared to the corresponding seven-layer
PDF (b). The differences in the PDFs (c, f, i) show that the tritium observations have the greatest biasing effect on the Firth forecast for the
one-layer model.

shown to vary between forecasts in such a way that reflects
the underlying physics represented by the model (e.g., the
MRT observations are of greatest worth for forecasts that
are located where the aquifer is receiving recharge); these
physics dictate the “information flow” rather than the spa-
tial proximity of the MRT observations and the forecast. The
forecast-specific nature of observation worth has also been
reported previously (e.g., Dausman et al., 2010; Fienen et al.,
2010; White et al., 2016). The worth of MRT observations
relative to various hydraulic potential and discharge observa-
tions across the different forecasts are, in general terms, sim-
ilar to those reported by Hunt et al. (2006), Masbruch et al.
(2014), Oehlmann et al. (2015), and Zell et al. (2018) (espe-
cially when considering the discussion point in the following
paragraph).

While the particle-tracking model used in the first case
study provides a mechanism for MRT observations to in-
form uncertain model parameters, including aquifer porosity
(which is otherwise uninformed by other historical field ob-
servations), it is important to note that the forecasts are insen-
sitive to porosity. That is, the information contained within
MRT observations is spread between parameters that both
do and do not play a role in constraining forecasts – effec-
tively “diluting” the information available for conditioning.
It is therefore expected that the worth of MRT observations

presented herein would generally be larger for forecasts that
are dependent on both uncertain hydraulic and transport pa-
rameters (e.g., particle travel times). This is notwithstand-
ing that the uncertainty variance for such forecasts may be
larger given the additional source of uncertainty associated
with porosity. These findings are nevertheless highly relevant
in that MRT observations are widely used and often regarded
to be of benefit in constraining uncertain model parameters
more generally (Schilling et al., 2019).

The second case study serves to demonstrate that as-
similating tritium concentration observations with simplified
(i.e., imperfect) numerical models may induce significant
bias in forecasts; this is bias that is undetectable without a
simple–complex model pair (e.g., Doherty and Christensen,
2011; White et al., 2014; Knowling et al., 2019). The forecast
bias revealed in the second case study occurs as a result of the
vertical-discretization simplified model’s inability to appro-
priately assimilate the rich information content of the tritium
observations. Generally, the observed pattern of simplifica-
tion and the resulting forecast bias implies that as the simpli-
fication of the model increases, the dangers of assimilating
rich and diverse data types also grows. This result is highly
relevant to decision-support modeling practitioners, since all
numerical models are gross simplifications of real environ-
mental systems that they attempt to simulate. We refer the
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reader to Knowling et al. (2019) and White et al. (2020) for
a broader exploration of the consequences of model sim-
plification (in the form of parameterization reduction and
vertical-discretization coarsening, respectively) in terms of
the decision-relevant forecast bias–variance trade-off and its
implications for management decision making more gener-
ally.

Collectively, these results suggest that the assimilation
of tritium and tritium-derived observations through history
matching with an imperfect model should be strategic and
approached with caution. It is recommended that these
information-rich observations should not indiscriminately be
incorporated in a data assimilation framework, given that this
study has shown that such an approach (i) may be of variable
apparent benefit, depending on the forecast being made, and
(ii) when using imperfect models, which may produce far
worse forecast outcomes than those that would have been ar-
rived at without assimilating these observations at all. This
recommendation is similar to those by Brynjarsdóttir and
O’Hagan (2014) and He et al. (2018). We consider this rec-
ommendation to be in stark contrast to what we believe is a
common view among practitioners that “calibrating to more
data improves the model and its predictions”; we therefore
consider this recommendation to be of significant implication
to decision-support environmental modeling practitioners.

Furthermore, we expect the above-mentioned issues asso-
ciated with imperfect-model data assimilation to be relevant
and largely transferrable to the assimilation of other environ-
mental tracers, other information-rich observations and di-
verse data types more generally. This is because we consider
the primary barrier to the appropriate assimilation of tritium
observation data encountered in the second case study to be
fundamental challenges associated with extracting appropri-
ate information from spatially discrete concentration obser-
vations when using upscaled or simplified representations of
hydraulic properties within a regional-scale model that sim-
ulates tracer concentrations using the advection–dispersion
equation (e.g., Zheng and Gorelick, 2003; Riva et al., 2008).
To the extent that simulated outputs corresponding to ob-
served tracer concentrations are sensitive to model details
or parameters that are “missing” in a simplified model (e.g.,
White et al., 2014), parameter compensation will occur (e.g.,
Clark and Vrugt, 2006). To the extent that the forecast of
management interest is dependent on these biased parameter
estimates, the forecast will also become biased, potentially
leading to resource mismanagement. The ubiquitous nature
of model error and the challenges in appropriately account-
ing for differences in, e.g., representative spatial scales be-
tween field observations and model-derived quantities, sug-
gests that the ill effects identified in this study such as bias
induced by history matching are not unique to the specifics
of our study (e.g., consideration of tritium as a tracer). The
similar findings and recommendations of Brynjarsdóttir and
O’Hagan (2014) and He et al. (2018) in the disciplines of
statistics and petroleum reservoir engineering, respectively,

also support the potential for the transferability in our find-
ings and recommendations to data assimilation in other envi-
ronmental modeling contexts.

If diverse and information-rich data such as tritium
and MRT observations are available and data assimilation
through history matching is deemed necessary and/or appro-
priate, then a targeted modeling approach is needed that iden-
tifies which of these data are relevant to the forecast. This is
critical to avoiding the ill effects of model error in the con-
text of decision-support modeling (e.g., White et al., 2014;
Knowling et al., 2019), as well as avoiding unnecessary com-
plexity (through processes and parameters) needed to simu-
late the equivalent values of the diverse data for assimilation
purposes, which may greatly increase the computational cost
of the modeling analysis.

It should be noted, however, that even when the forecast is
well “aligned” with observation data (i.e., the forecast is de-
pendent on parameters residing in the solution space), some
degree of parameter compensation will inevitably occur; all
models are gross simplifications, and therefore model param-
eters do not perfectly represent real-world properties (e.g.,
Clark and Vrugt, 2006; White et al., 2014). However, if the
data used for assimilation are commensurate with the fore-
casts, then the ill effects of model error may be expected to
be negligible (e.g., Doherty and Christensen, 2011; Watson
et al., 2013).

The above findings and recommendations suggest that
there is a significant need to develop improved strategies
to assimilate diverse observation types including tracer con-
centration and tracer interpretation observations in numeri-
cal models for decision support. Such strategies will likely
require increased model complexity (including advanced
discretization, process representation and parameterization)
such that information-rich and diverse data types that operate
across a range of spatial and temporal scales commensurate
with a given forecast can be properly assimilated.

However, an important and challenging compromise will
be encountered: the need for enough model complexity to
appropriately assimilate rich and diverse observations while
simultaneously ensuring that this level of complexity does
not preclude the application of formal data assimilation and
uncertainty quantification techniques due to the associated
numerical instability and excessive run times. The naviga-
tion of this trade-off is central to effective and efficient
decision-support modeling practice. In the meantime, tracer-
data model assimilation should involve processing or trans-
forming of concentrations into quantities that may be more
useful and may guard against ill effects of history matching
imperfect models (e.g., by integrating observations in space
and time) (e.g., Rasa et al., 2013; Knowling et al., 2019;
White et al., 2020).
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Appendix A: First-order second-moment (FOSM)
methodology

This section provides a description of the FOSM approach
used in the first case study to quantify uncertainty variance
and assess data worth.

The covariance matrix of uncertain model parameters 6θ

can be approximated using the Schur complement as follows
(Golub and Van Loan, 1996; Tarantola, 2005):

6θ =6θ −6θJT
[
J6θJT +6ε

]−1
J6θ , (A1)

where 6θ is the prior parameter covariance matrix, which
is specified based on expert knowledge pertaining to site sys-
tem characteristics; 6ε is the epistemic observation noise co-
variance matrix (often assumed to have non-zero diagonal el-
ements only), which includes the effects of model structural
errors and measurement errors; and J is the Jacobian ma-
trix of partial first derivatives (i.e., sensitivities) of simulated
model outputs with respect to parameters. The Schur comple-
ment can be considered a linearized form of Bayes’ equation
to estimate the second moment of the parameter and fore-
cast posterior distribution (e.g., Goldstein and Wooff, 2007;
Christensen and Doherty, 2008; Dausman et al., 2010).

Equation (A1) assumes a linear relation between model
parameters and simulated outputs (i.e., the sensitivities en-
capsulated within the J matrix are independent of the param-
eter values θ ). It also assumes that parameter and epistemic
uncertainty distributions are Gaussian (i.e., normal).

While the posterior parameter and forecast uncertainty
variances yielded by FOSM may only be approximate (de-
pending on the validity of the linear assumption), the com-
putational efficiency with which a large number of different
number of conditioning “experiments” can be performed is
unparalleled; these experiments facilitate the rapid evaluation
of the worth of different types of observations to reduce fore-
cast variance. In addition, a number of studies have shown
support for its usage especially in a relative second-moment
sense (e.g., Dausman et al., 2010; Herckenrath et al., 2011;
Knowling et al., 2019).

The prior and posterior uncertainty variance surrounding
a forecast σ 2

s can be expressed by mapping uncertainty from
parameter to forecast “space”. This is achieved by computing
the sensitivity of the forecast to model parameters, compris-
ing the vector y (i.e., a row of J). That is

σ 2
s = yT6θy (A2)

and

σ 2
s = yT6θy. (A3)

The worth of data, expressed as a percentage, is given by

%DW=

∣∣σ 2
±obs− σ

2
base

∣∣
min

{
σ 2

base,σ
2
±obs

} × 100, (A4)

where σ 2
±obs is the increase or decrease in forecast uncer-

tainty variance as a result of the removal or addition of one
or more observations or observation groups used for parame-
ter conditioning, respectively, and σ 2

base is either the forecast
uncertainty calculated on the basis of all observation data or
zero observation data, depending on whether data worth is
being quantified by adding or removing observations.

Herein, we quantify %DW as a result of both the removal
and addition of observation groups. We primarily focus on
%DW values based on the removal of an observation group
from an otherwise full observation dataset available for as-
similation, given that these values reflect the unique (i.e.,
uncorrelated) information content of observations. However,
the difference between %DW values arising from these dif-
ferent data-worth quantification approaches is used herein to
comment on the level of information uniqueness or redun-
dancy within observation groups.

It is important to note that each FOSM-based data-worth
assessment is conducted with respect to a single forecast
(notwithstanding that we evaluate the worth of different ob-
servation data with respect to a number of different fore-
casts). We consider this to be a side benefit of this approach,
especially given the need for decision-support modeling to
be undertaken in a forecast-targeted manner, as discussed re-
cently by White (2017).
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